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Abstract. The problem of a two-dimensional magnetopolaron is investigated on the basis 
of a variational theory consisting of an adiabatic polaronic wavefunction combined with a 
perturbative correction by which it is possible to interrelate the strong and weak coupling 
counterparts of the coupled electron-phonon system. I t  is seen that the theory conveniently 
reproduces the desirable asymptotic limits in the different regimes of the problem. Fur- 
thermore, it is suggested that a satisfying improvement should be achieved if one adopts a 
suitably modified coherent phonon state operator which takes into account the fractional 
admixture of whether the lattice deformation tends to cover the entire Landau orbit or the 
mean electron position. 

1. Introduction 

In view of the innumerable amount of papers focused on the study of magnetopolarons 
we observe that the problem is not only interesting in laying out quite distinguishing 
features depending on the magnetic field intensity and the strength of electron-phonon 
coupling, but is also attractive formally. The interpretation of the problem and its 
mathematical structure are relatively simple and well understood in the asymptotic 
limits. At weak phonon coupling the most usual approach is the perturbation theory 
(see Larsen 1986, for instance), and moreover if the magnetic field is also weak, 
the problem can be visualised as consisting of an electron orbiting together with its 
concomitant lattice deformation with an effective polaron mass rather than the band 
mass. A contrasting aspect to such a description of the polaron is the case where 
the electron goes into a bound state with a highly localised wavefunction in the deep 
potential well induced by the lattice polarisation. A way to reach this totally distinct 
aspect is either to imagine a rather strong coupling to the lattice or to go over to the 
high magnetic field limit where the lattice can only respond to mean charge density of 
the rapidly orbiting electron and hence acquire a static deformation clothing the entire 
Landau orbit. In both situations a satisfying approach can most readily be attained by 
the strong coupling-adiabatic theory (Pekar 1954). 

For a more general view of the problem, not restricted to the limiting regimes, 
one requires more powerful methods or interpolating approximations. The purpose 
of this paper is to refer to such a technique so as to display a broader insight into 
the ground state behaviour of the magnetopolaron beyond that given in the weak and 
strong coupling extremes. The formalism we follow in this work was previously used 
by Devreese et a1 (1982) in their study of a polaron bound to a Coulomb centre. The 
procedure is an extension of the adiabatic approximation in the sense that a strongly 
coupled polaronic state combined with a first-order perturbative correction is used as 
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a variational trial function by which it is possible to achieve a satisfying extrapolation 
towards the weak coupling regime. 

In the following we specialise our considerations to an idealised two-dimensional 
(2D) system by taking the electronic wavefunction strictly planar lying in the directions 
perpendicular to the magnetic field, and thus ignore the charge density fluctuations of 
the electron in the longitudinal dimension which is not very crucial in the discussion of 
the formalism we follow in this work. A description of the 2D approximation and the 
rationale behind it has already been given by Das Sarma and Mason (1985) in their 
study of the free polaron problem in two-dimensionally confined quantum structures. 
The purely 2D characterisation of the dynamical behaviour of the electron, besides 
facilitating our computations, provides a means by which a correspondence of our 2D 
results can be made with some of the recent papers along the same line (Larsen 1984, 
1986, Das Sarma 1984, Wu et a1 1985). 

Apart from its formal interest, the 2D model lends some insight into the significance, 
or at least the order of magnitude of, the polaron effect in confined structures such as, 
for instance, when the magnetopolaron gets compressed between the confining barriers 
of a quantum well. It should, however, be noted that a more appropriate approach 
would be to account for the possibility that the transverse coordinates may become 
incorporated with the longitudinal direction via coupling to the phonon field. In fact, 
the salient features which may be brought about by the mutual interrelation between 
the transverse and longitudinal directions was exemplified previously in the study of the 
quasi-2D polaron bound to a Coulomb centre (ErGelebi and Sualp 1987). Nevertheless, 
for the present we still adopt the 2D model of a polaron in a magnetic field so as to 
eliminate any complications comprised by the third dimension and give most emphasis 
on the formal viewpoint of the problem. 

2. Formulation 

Using the symmetric gauge A = (B/2)(-4', x, 0) for the magnetic field, the Hamiltonian 
of a 2D electron immersed in the field of bulk LO phonons is given by 

in which energies have been scaled by the phonon energy fro,, and lengths by the 
polaron radius (F1/2mo,)'/~. In the above, p = ( x , y )  denotes the electron position in 
the transverse plane, 1, = xpr  - y p x  is the angular momentum, and o, = ( e B / m c ) / u ,  
is the dimensionless cyclotron frequency. The interaction amplitude is related to the 
electron-phonon coupling constant c( and the phonon wavevector Q = q + q,z^ through 
VQ = (471~()'/~/Q. 

In the following we shall not take any explicit functional form for the electron 
part of the trial state, but instead use the linear combinations of the coordinates and 
momenta of the electron as operators: 
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where the index ,U refers to the x and y directions, and a is an adjustable parameter. 
For the electron Hamiltonian we then have 

Defining the ground state I O )  by 

b, I O )  = O  aQ j 0)  = O  (0 I O )  = 1 ( 5 )  

we find that with no phonon coupling yet introduced into the problem, the optimal 
o-value is wc/2, yielding eo = (0 I Ho 1 0) = wc/2 as expected. 

Turning on the phonon coupling the problem becomes somewhat complicated 
owing to the combined effect of the magnetic field and the Frohlich interaction. We 
therefore choose to begin with the weak coupling extreme where at high magnetic 
fields the adiabatic approach is expected to give the same result obtained from the 
second-order perturbation theory. Setting up the most efficient coherent phonon state 
as centred on the orbit centre (Whitfield et a1 1976) 

the Hamiltonian transforms to 

where 

which is identical to the perturbation result of Larsen (1986) to leading order in CI. 

Obviously, for not too strong magnetic fields the adiabatic condition and hence 
(10) loses its validity. This, however, can be corrected using the improved trial state 
(Devreese et a1 1982) 

Q 

in which c is a constant which serves for normalisation, and gQ is a variational parameter 
determining the fractional admixture of the strong and weak coupling counterparts of 
the problem. 



10084 A ErGelebi and B Saqqa 

The optimal fit to gQ is achieved by minimising (0' I H' 1 0') subject to the constraint 

For the energy we then have 

E ,  = E o  + E (14) 

where E is a Lagrange multiplier depending on tl and w, through the transcendental 
equation 

and 

fQ  =-E v:JgQ(o 1 vQ{exp[ id ' (p-~o) l  +exp[- id ' (p-pO)l)v~ I O)  
Q 

= 2epaQ [ z O ( q 2 / 8 w , )  - aQ1 (18) 

in which Io  is the modified Bessel function of order zero. 
In order to find a solution for E in (15) in the overall range of the magnetic field 

one requires numerical techniques. Taking a small coupling constant (a = 0.01), in 
figure 1 we plot the polaronic correction to the ground state energy as a function of the 
cyclotron frequency. Starting from the high-field extreme and going to the weak-field 
limit we observe that the improved state (1 1) gives a satisfying description of the ground 
state in that it does not only yield better results, but indeed approaches asymptotically 
to the well established value, cp = -(71/2)tl, for a weakly coupled polaron. In order to 
test the degree of validity of this formulation we make some correspondence with the 
generalised path-integral results of Wu et a1 (1985), hereafter referred to as WPD. 

A comparison of the present work with the WPD theory for tl = 0.1 is given in 
table 1 which also includes the strong coupling results (with E = 0) for completeness. 
We observe that the improvement achieved by the trial state (11) is promising. For 
o, = 1, for instance, the deviation from the path-integral value is less than 4%, whereas 
in the strict adiabatic treatment the discrepancy is as large as 28%. 

For a comparatively large a however, the theory we follow in its present form is 
observed to fail to reflect a correct description of the ground state except for sufficiently 
large magnetic fields. In table 2 we tabulate our results together with the available data 
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Figure 1. The polaronic correction A E  = ( E ,  - $ w c ) / i m  as a function of wc at weak 
coupling for a = 0.01. The full and broken curves refer to the present and the strong 
coupling approximations with E in (14) taken as non-zero and zero, respectively. 

Table 1. The ground state energy E ,  against the cyclotron frequency for CI = 0.1. The first 
and the third rows display the results of the generalised path integral approach of Wu et 
al (1985) and the strong coupling approximation. 

0, 0.1 1 10 
~~ ~~ 

E W ~ D  -0,1095 0.3225 4.6827 
Ea -0.0989 0.3343 4.6901 
€0 -0.0220 0.4114 4.7198 

Table 2. The ground state energy Ea against wc for a = 4 . The upper (lower) values for 
E W ~ D  refer to the Gaussian (generalised) path integral calculations of Wu et al (1985). 

WC 0.1 0.2 1 2 10 

E ,  -3.531 -3.761 -4.780 -5.477 -7.069 
E W ~ D  -7.694 -1.694 -7.683 -7.650 -6.729 
E W ~ D  -8.207 -8.206 -8.190 -8.150 -7.700 

of WPD for CL = 4 , We at once note that the present values deviate rather drastically 
from those of WPD except the one for CO, = 10 . The reason for the fault lies in that 
the transformed Hamiltonian (7) involves the coherent phonon state centred on the 
orbit centre po which obviously is misleading since for strong phonon coupling and 
not too large oc, the polaronic aspect overcompensates the magnetic field counterpart 
of the problem. An insight to overcome the drawback encountered here can readily be 
achieved by making reference to the extreme limit of c( 9 1 and CO, < 1 where now the 
lattice deformation should be thought as surrounding the mean charge density of the 
electron itself rather than its overall motion in a Landau orbit. Selecting the displaced 
(coherent) phonon state to be centred on the origin, i.e. setting pa = 0 in (7)-(9) and 
(18), we obtain the following alternative form for the energy 

E,  = e, + ep  + E 
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where 

and e is to be evaluated in an iterative scheme through 

f -  

Unlike the former case, the variational parameter 0 does not depend only on w, 
but on a as well. Optimising (19) with respect to e and 0 we find that for all cases 
when the magnetic field loses its dominating strength over the coupled electron-phonon 
system, the ground state energy is more appropriately given by E,, and approaches the 
well established asymptotic value -(n/8)a2 for a & 1 and o, -+ 0. In order to give a 
pictorial view of the ground state energy calculated with both choices for the set of 
coordinates about which the lattice deformation forms, we display E ,  and E ,  against 
the cyclotron frequency for CI = 4 (cf figure 2). 

n -4 

l o  
-81 , 

- 9  
01 0 2  0 5  1 2 5 10 20 

4 

Figure 2. The ground state energy versus wc for G( = 4. E ,  and Eb are for when 
the deformation is taken as centred on the orbit centre coordinates and on the origin, 
respectively. The open and full circles display the results of the Gaussian and generalised 
path integral approximations of Wu et al (1985). 

We note that the two solutions cross over and thus exhibit a cusp in the energy 
profile at about w, = 6.85. For cyclotron frequencies considerably below and above the 
crossover point the theory is observed to yield predominantly the minimum relevant 
to two qualitatively distinguishing cases where the lattice polarisation is thought to be 
clothing the mean electron position or else the lattice acquiring a static deformation 
over the entire Landau orbit (corresponding to the so-called dressed and stripped 
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phases as investigated previously by WPD). This in fact is a further interesting feature 
of the magnetopolaron pertaining to the combined effect of electron-phonon coupling 
and the magnetic field. In this context, the understanding of whether or not the 
system conforms from one phase to the other in an abrupt manner has always been a 
challenging and controversial aspect of the problem in both two and three dimensions. 
It has only very recently been reported by Lowen (1988) that the qualitative changes 
in the polaron quantities as a function of M or w, do actually take place in a smooth 
and continuous way, and that should any non-analytic behaviour encountered be an 
artefact of the approximating theory rather than the intrinsic property of the Frohlich 
Hamiltonian. For the present we therefore refrain ourselves from giving an elaborate 
discussion on the ground state behaviour of the magnetopolaron across the transition 
region since a totally satisfying characterisation of the problem requires the formulation 
we have utilised to be modified accordingly so as to incorporate the two competitive 
contributions coming from the phonon coupling alone and the magnetic field alone. 
Nevertheless, in spite of such a drawback the theory is still promising and conveniently 
reproduces the desirable asymptotic limits in the different regimes of the problem. 

In summary, this work revises the problem of a two-dimensional magnetopolaron 
within the extended variational scheme of Devreese et a1 (1982). It has been observed 
that the improved trial state (11) sets up a weighted admixture of the strong and 
weak coupling counterparts of the problem and thus enables the adiabatic results to 
conform successfully to those attained from second order perturbation theory. We 
believe that further improvement and considerably better results should be achieved 
if one adopts a suitably modified coherent phonon state which takes into account 
the involved interrelation between whether the lattice deformation tends to cover the 
entire Landau orbit or the mean electron position. A more appropriate version of 
the present theory would then consist of utilising the extended trial state (11) together 
with the Hamiltonian transformed accordingly such as was suggested, for instance, 
in a previous paper (Ergelebi 1989) concerning the same problem within the strict 
strong-coupling approximation. Even though the procedure is straightforward, the 
corresponding algebra is expected to be somewhat tedious. We therefore retain the 
relevant discussions until a future report. 
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